Facade ONE International is a leading Facade Solution and System Supply Company established in year 2012. Based in Mumbai, Façade ONE has International office at Dubai, Sales offices in Switzerland & USA shall be operational in 2019. The company is part of 15 year old Facade India Group, providing complete solutions backed up by Cutting Edge Technology with highest performance parameters. Facade India Group having three core technical verticals of Facade Design Consulting, Facade Performance Testing and Facade system solution qualifies uniquely at Global level. The philosophy and DNA or organisation is Innovation and Differentiation.

Leadership
The Visionary Founder member V S. Ravi with his 35 yrs of rich experience in Facade Engineering along with New generation member Shashank Iyer with his 8 years of Facade and Strategic management experience bringing combination of experience and Dynamism to the Company’s growth. Under leadership of V. S. Ravi, Facade India Group has become a brand and most sought after Design Consulting & Testing Laboratory having delivered more than 550+ Projects all over India and abroad. The Façade India Group has Design & Engineering Cell + large Testing laboratory Vertical + System Solution Company. This brings best Technological Features in the products with high Performance in the System.

Positioning
Facade ONE International became one of most Innovative and Quality oriented System Supply Company in last 6 yrs of its Operation. Innovation, Sustainable design, Passion one the Hallmark of Façade ONE International Philosophy. Innovation being in the DNA of company has resulted in many IPR and Design Patents. World class infrastructure with Design office spread over 12000 ft2 and R&D centre over 150000 ft2. The manufacturing and supply sources from India as well from Dubai with present extrusion size capabilities up to 510mm. Up to 92% of Buildings Architectural requirement which serviced by Façade ONE International Products. Company is poised to grow in India, GCC region, Europe, US, Africa & South East Asia. Façade ONE International has completed 150+ Projects in last 6 yrs of Operation including International projects in Srilanka, Africa & UAE. Façade ONE International 85+ organisation and fast growing.

Products
- Facade ONE International provides Energy efficient Thermal Break Curtain wall system
- Next generation Double Skin Unitised System & Bespoke Curtain wall designs to suit Project requirements.
- As a special Engineering requirement Facade ONE International also provides solution to Bomb Blast Resistance facade from 8 KPa load to 15 KPa blast load.
- Unique curtain wall solutions in Skewed, Articulated, Diamond design & Offset design helps Architects to push limits in Envelope design.
- The product portfolio also comprise of Alusleek Lobby Glazing for large spans. Complete range of slim line window system, seamless railings and baluster railings, All aluminium Swiss cladding & 3D Screens, Architectural louvers etc.
PERFORMANCES

1. MATERIAL
Aluminium
Alloy 6063 - T6 / 6061 - T6

2. DESIGN STANDARDS
IBC
International Building Code
BS EN
British Standard European Norm
NFRC
Overall Facade Thermal Resistance Meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement

3. PERFORMANCE
Thermal Resistance (Uf - Value)
(EN ISO 10077-2 / EN ISO 10211)
0.72 BTU/hr/ft²°F - 1.39 BTU/hr/ft²°F (4.1 W/m².K - 7.9 W/m².K)

Air infiltration
(ASTM E 283)
6.25 psf (300 Pa)

Water Resistance
(Static) (ASTM E 331)
12.53 psf (600 Pa)

Water Resistance
(Dynamic) (ASTM E 501.1)
12.53 psf (600 Pa)

Wind Load Resistance
(Structural) (ASTM E 330)
27.15 psf (1300 Pa)

4. SYSTEM VARIANTS
ALUSLEEK GLAZING
30200 | 30250 | 30300 | 50300

The performance values, which can be achieved for specific configurations and opening types, are also customised as per requirement.

(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, which is achieved from Flixo Thermal Analysis Software.
(2) The air tightness test measures the volume of air that would pass through a closed Glazing at a certain air pressure.
(3) The water tightness testing involves applying a uniform water spray at constant air pressure until water penetrates the Glazing.
(4) The wind load resistance is a measure of the profile's structural strength and is tested by applying increasing levels of air pressure to simulate the wind force.
ALUSLEEK ENTRANCE GLAZING

ALUSLEEK SYSTEMS

NO HORIZONTAL
NO STEEL
CLEAN ARCHITECTURE

PERFORMANCES

1. MATERIAL
Aluminium
Alloy 6063 - T6 / 6061 - T6

2. DESIGN STANDARDS
- IBC: International Building Code
- BS EN: British Standard European Norm

3. PERFORMANCE
- Thermal Resistance (Uf - Value) (EN ISO 10077-2 / EN ISO 10211): 0.86 BTU/hr/ft²/°F (4.9 W/m².K)
- Air infiltration (ASTM E 283): 6.25 psf (300 Pa)
- Water Resistance (Static) (ASTM E 331): 12.53 psf (600 Pa)
- Wind Load Resistance (Structural) (ASTM E 330): 27.15 psf (1300 Pa)

4. SYSTEM VARIANTS
ALUSLEEK GLAZING
40500 | 70500

The performance values, which can be achieved for specific configurations and opening types, are customised as per requirement.

(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, which is achieved from Flixo Thermal Analysis Software.
(2) The air tightness test measures the volume of air that would pass through a closed Glazing at a certain air pressure.
(3) The water tightness test measures applying a uniform water spray at constant air pressure until water penetrates the Glazing.
(4) The wind load resistance is a measure of the profile’s structural strength and is tested by applying increasing levels of air pressure to simulate the wind force.
PERFORMANCES

1. MATERIAL
Aluminium

2. DESIGN STANDARDS
IBC
International Building Code
BS EN
British Standard European Norm
NFRC
Overall Facade Thermal Resistance Meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement

3. PERFORMANCE
Thermal Resistance (Uf - Value) (EN ISO 10077-2 / EN ISO 10211)

1.29 BTU/hr/ft²/°F (7.3 W/m².K)

Air infiltration (ASTM E 283)
6.25 psf (300 Pa)

Water Resistance (Static) (ASTM E 331)
12.53 psf (600 Pa)

Water Resistance (Dynamic) (ASTM E 501.1)
12.53 psf (600 Pa)

Wind Load Resistance (Structural) (ASTM E 330)
50 psf (2400 Pa)

The performance values, which can be achieved for specific configurations and opening types, we also customised as per requirement.

(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, which is achieved from Flixo Thermal Analysis Software.
(2) The air tightness test measures the volume of air that would pass through a closed Glazing at a certain air pressure.
(3) The water tightness testing involves applying a uniform water spray at constant air pressure until water penetrates the Glazing.
(4) The wind load resistance is a measure of the profile’s structural strength and is tested by applying increasing levels of air pressure to simulate the wind force.
PERFORMANCES

<table>
<thead>
<tr>
<th>1. MATERIAL</th>
<th>Aluminium</th>
<th>Alloy 6063 - T6 / 6061 - T6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2. DESIGN STANDARDS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IBC</td>
<td>International Building Code</td>
<td></td>
</tr>
<tr>
<td>BS EN</td>
<td>British Standard European Norm</td>
<td></td>
</tr>
<tr>
<td>NFRC</td>
<td>Overall Facade Thermal Resistance Meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. PERFORMANCE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance (Uf - Value) (EN ISO 10077-2 / EN ISO 10211)</td>
<td>0.65 BTU/hr/ft²/F (3.7 W/m².K)</td>
<td></td>
</tr>
<tr>
<td>Air infiltration (ASTM E 283)</td>
<td>6.25 psf (300 Pa)</td>
<td></td>
</tr>
<tr>
<td>Water Resistance (Static) (ASTM E 331)</td>
<td>12.53 psf (600 Pa)</td>
<td></td>
</tr>
<tr>
<td>Water Resistance (Dynamic) (ASTM E 503.1)</td>
<td>12.53 psf (600 Pa)</td>
<td></td>
</tr>
<tr>
<td>Wind Load Resistance (Structural) (ASTM E 330)</td>
<td>155 psf (7400 Pa)</td>
<td></td>
</tr>
</tbody>
</table>

The performance values, which can be achieved for specific configurations and opening types, are also customised as per requirement.

(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, which is achieved from Flixo Thermal Analysis Software.

(2) The air tightness test measures the volume of air that would pass through a closed Glazing at a certain air pressure.

(3) The water tightness testing involves applying a uniform water spray at constant air pressure until water penetrates the Glazing.

(4) The wind load resistance is a measure of the profile's structural strength and is tested by applying increasing levels of air pressure to simulate the wind force.
PERFORMANCES

1. MATERIAL

| Material | Alloy 6063 - T6 / 6061 - T6 |

2. DESIGN STANDARDS

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBC</td>
<td>International Building Code</td>
</tr>
<tr>
<td>BS EN</td>
<td>British Standard European Norm</td>
</tr>
<tr>
<td>NFRC</td>
<td>Overall Facade Thermal Resistance Meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement</td>
</tr>
</tbody>
</table>

3. PERFORMANCE

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance (Uf - Value)</td>
<td>1.29 BTU/hr/ft°F (7.3 W/m².K)</td>
</tr>
<tr>
<td>Air Infiltration (ASTM E 283)</td>
<td>6.25 psf (300 Pa)</td>
</tr>
<tr>
<td>Water Resistance (Static) (ASTM E 331)</td>
<td>12.53 psf (600 Pa)</td>
</tr>
<tr>
<td>Water Resistance (Dynamic) (ASTM E 501.1)</td>
<td>12.53 psf (600 Pa)</td>
</tr>
<tr>
<td>Wind Load Resistance (Structural) (ASTM E 330)</td>
<td>50 psf (2400 Pa)</td>
</tr>
</tbody>
</table>

The performance values, which can be achieved for specific configurations and opening types, can also be customised as per requirement.

(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, which is achieved from Flixo Thermal Analysis Software.

(2) The air tightness test measures the volume of air that would pass through a closed Glazing at a certain air pressure.

(3) The water tightness testing involves applying a uniform water spray at constant air pressure until water penetrates the Glazing.

(4) The wind load resistance is a measure of the profile's structural strength and is tested by applying increasing levels of air pressure to simulate the wind force.
Note:-
1) All Façade profile Thermal Resistance Meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement.
2) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, Which is Achieved from Flixo Thermal Analysis Software.
<table>
<thead>
<tr>
<th>Façade Type</th>
<th>Uf - Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL BREAK CAP CURTAIN WALL</td>
<td>0.70 BTU/hr/ft²/°F (4 W/m².K)</td>
</tr>
<tr>
<td>THERMAL BREAK SLEEK CURTAIN WALL</td>
<td>0.70 BTU/hr/ft²/°F (4 W/m².K)</td>
</tr>
<tr>
<td>TOGGLE SYSTEM STICK CURTAIN WALL</td>
<td>0.79 BTU/hr/ft²/°F (4.5 W/m².K)</td>
</tr>
<tr>
<td>THERMAL BREAK SEMI UNITIZED CURTAIN WALL</td>
<td>0.48 BTU/hr/ft²/°F (2.7 W/m².K)</td>
</tr>
<tr>
<td>THERMAL BREAK UNITIZED CURTAIN WALL</td>
<td>0.48 BTU/hr/ft²/°F (2.7 W/m².K)</td>
</tr>
<tr>
<td>SPECIAL FACADES</td>
<td></td>
</tr>
<tr>
<td>BLAST RESISTANCE CURTAIN WALL</td>
<td>blast resistance system to sustain up to 15 KPa</td>
</tr>
</tbody>
</table>

Note:
1) All façade profile thermal resistance meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement.
2) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame, which is achieved from Flixo Thermal Analysis Software.
FIREPROOF SWISSCLAD

Right solution

FIRE & TOXIC SMOKE
Your Property, data & life at risk

Tested at CBRI ROORKEE
Fire class A1
Non combustible
No toxic smoke

Tested at FAÇADE INDIA TESTING INC
Tested for WIND LOAD
1 KPa – 7.3 KPa

Innovation to life safety

SWISSCLAD SPANDREL WALL

SCLAD 150 DETAIL
1. MATERIAL
Aluminium - Alloy 6063-T6 / 6061-T6

2. SYSTEMS
1. Grid System
2. Open Joint Hook on System
3. Unitized System

3. DESIGN STANDARDS
IBC - International Building Code
BS EN - British Standard European Norm

4. PERFORMANCE
Water Resistance (Static) (ASTM E 331) - 12.53 psf (600 Pa)
Water Resistance (Dynamic) (ASTM E 501.1) - 12.53 psf (600 Pa)
Wind Load Resistance (Structural) (ASTM E 330) - 153 psf (7300 Pa)

5. FIRE TEST SPECIFICATION
- Non-combustibility: BS 476: Part 4
- Ignitability: BS 476: Part 5
- Fire Propagation Index: BS 476: Part 6
- Surface Spread of Flame: BS 476: Part 7

The performance values, which can be achieved for specific configurations and opening types, are also customised as per requirement.

(1) The water tightness testing involves applying a uniform water spray at constant air pressure until water penetrates the Glazing.
(2) The wind load resistance is a measure of the profile's structural strength and is tested by applying increasing levels of air pressure to simulate the wind force.
PERFORMANCES

1. MATERIAL
Aluminium
Alloy 6063 - T6 / 6061 - T6

2. FINISHES
PVDF (AAMA 2605) 35 Microns
SDF (AAMA 2604) 60-80 Microns
ANODISED (ASTM / BS) 22-25 Microns

3. DESIGN STANDARDS
IBC International Building Code
BS EN British Standard European Norm

4. PERFORMANCE
Wind Load Resistance (Structural) (IBC / ASCE 7) 42 psf (2000 Pa)

5. DESIGN VARIANTS
| Width (W) | 30 | 30 | 30 | 50 | 50 |
| Depth (D) | 75 | 100 | 150 | 75 | 100 | 150 |

The performance values, which can be achieved for specific configurations and opening types, are customised as per requirement.

(1) The wind load resistance is achieved by structural analysis of profile strength.
PERFORMANCES

1. MATERIAL
 Aluminium
 Alloy 6063 - T6 / 6061 - T6

2. DESIGN STANDARDS
 IBC
 International Building Code
 BS EN
 British Standard European Norm
 NFRC
 Overall Facade Thermal Resistance Meeting National Fenestration Rating Council (NFRC) Energy Performance Requirement

3. PERFORMANCE
 Wind Load Resistance (Structural) (IBC / ASCE 7)
 94 psf (4500 Pa)

The performance values, which can be achieved for specific configurations and opening types, are also customised as per requirement.

(1) The wind load resistance is achieved by structural analysis of profile strength.
SLIDING WINDOW OF THERMAL BREAK VARIANTS

- BOTTOM TRACK
- JAMB PROFILE
- INSIDE FLUSHED TRACK
- INTERLOCK PROFILE
- FULL FLUSHED TRACK
- CORNER ARRANGEMENT

SLIDING WINDOW DETAILS

- FULL FLUSHED TRACK

ALSO CUSTOMIZED AS PER YOUR REQUIREMENT
SEAMLESS RAILING VARIANTS

PERFORMANCES

1. MATERIAL
Aluminium
Alloy 6063 - T6 / 6061 - T6

2. DESIGN STANDARDS
IBC
International Building Code
BS EN
British Standard European Norm

3. PERFORMANCE
Live Load Resistance (IBC / ASCE 7 / BS 6399 : Part I / ASTM)
50 plf - 206 plf (0.73 KN/m - 3 KN/m)
Wind Load Resistance (Structural) (IBC / ASCE 7)
21 - 63 psf (1000 - 3000 Pa)

4. INNOVATION AND DIFFERENTIATION
Self Check, Anti - Uplift, Seismic Proof Mechanism

The performance values, which can be achieved for specific configurations and opening types, we also customised as per requirement.

(1) The wind load resistance is achieved by structural analysis of profile strength.
SWISS SCREEN
MOVABLE SUNBREAKERS

ALSO CUSTOMIZED
AS PER YOUR REQUIREMENT
SWISS SCREEN
ENTRANCE GLAZING

SWISS SCREEN
OUTDOOR SITTING
PERFORMANCES

| 1. MATERIAL | Aluminium
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alloy 6063 - T6 / 6061 - T6</td>
</tr>
</tbody>
</table>
| 2. FINISHES | PVDF (AAMA 2605)
| | 35 Microns |
| | SDF (AAMA 2604)
| | 60-80 Microns |
| 3. DESIGN STANDARDS | IBC
| | International Building Code |
| | BS EN
| | British Standard European Norm |
| 4. PERFORMANCE | Wind Load Resistance
| (Structural) (IBC / ASCE 7) | 42 psf (2000 Pa) |

The performance values, which can be achieved for specific configurations and opening types, are also customised as per requirement.

(1) The wind load resistance is achieved by structural analysis of profile strength.